141 research outputs found

    Earth reflector type classification based on multispectral remote sensing image

    Full text link
    Earth’s reflectivity is one of the key parameters of climate change, Earth’s radiation budget research and so on. It is determined by the characteristic of Earth atmosphere components. Earth atmosphere components vary strongly in both spatially and temporally, thus complete spatial mosaics and/or richer time series information are needed. In this study, we developed an Earth Reflector Type Index (ERTI) to discriminate major Earth atmosphere components: clouds, cloud-free ocean, bare and vegetated land. Results show that the probability of the ERTI method with selected thresholds being able to discriminate between cloudy and cloud-free scenes is about 82%. ERTI can be used to interpret global Earth’s reflectivity and its temporal variation.Accepted manuscrip

    A Contextual Fire Detection Algorithm for Simulated HJ-1B Imagery

    Get PDF
    The HJ-1B satellite, which was launched on September 6, 2008, is one of the small ones placed in the constellation for disaster prediction and monitoring. HJ-1B imagery was simulated in this paper, which contains fires of various sizes and temperatures in a wide range of terrestrial biomes and climates, including RED, NIR, MIR and TIR channels. Based on the MODIS version 4 contextual algorithm and the characteristics of HJ-1B sensor, a contextual fire detection algorithm was proposed and tested using simulated HJ-1B data. It was evaluated by the probability of fire detection and false alarm as functions of fire temperature and fire area. Results indicate that when the simulated fire area is larger than 45 m2 and the simulated fire temperature is larger than 800 K, the algorithm has a higher probability of detection. But if the simulated fire area is smaller than 10 m2, only when the simulated fire temperature is larger than 900 K, may the fire be detected. For fire areas about 100 m2, the proposed algorithm has a higher detection probability than that of the MODIS product. Finally, the omission and commission error were evaluated which are important factors to affect the performance of this algorithm. It has been demonstrated that HJ-1B satellite data are much sensitive to smaller and cooler fires than MODIS or AVHRR data and the improved capabilities of HJ-1B data will offer a fine opportunity for the fire detection

    Evaluation of MODIS LAI/FPAR product Collection 6. Part 1: consistency and improvements

    Get PDF
    As the latest version of Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) products, Collection 6 (C6) has been distributed since August 2015. This collection is evaluated in this two-part series with the goal of assessing product accuracy, uncertainty and consistency with the previous version. In this first paper, we compare C6 (MOD15A2H) with Collection 5 (C5) to check for consistency and discuss the scale effects associated with changing spatial resolution between the two collections and benefits from improvements to algorithm inputs. Compared with C5, C6 benefits from two improved inputs: (1) L2G–lite surface reflectance at 500 m resolution in place of reflectance at 1 km resolution; and (2) new multi-year land-cover product at 500 m resolution in place of the 1 km static land-cover product. Global and seasonal comparison between C5 and C6 indicates good continuity and consistency for all biome types. Moreover, inter-annual LAI anomalies at the regional scale from C5 and C6 agree well. The proportion of main radiative transfer algorithm retrievals in C6 increased slightly in most biome types, notably including a 17% improvement in evergreen broadleaf forests. With same biome input, the mean RMSE of LAI and FPAR between C5 and C6 at global scale are 0.29 and 0.091, respectively, but biome type disagreement worsens the consistency (LAI: 0.39, FPAR: 0.102). By quantifying the impact of input changes, we find that the improvements of both land-cover and reflectance products improve LAI/FPAR products. Moreover, we find that spatial scale effects due to a resolution change from 1 km to 500 m do not cause any significant differences.Help from MODIS & VIIRS Science team members is gratefully acknowledged. This work is supported by the MODIS program of NASA and partially funded by the National Basic Research Program of China (Grant No. 2013CB733402), the key program of NSFC (Grant No. 41331171) and Chinese Scholarship Council. (MODIS program of NASA; 2013CB733402 - National Basic Research Program of China; 41331171 - NSFC; Chinese Scholarship Council

    Evaluation of MODIS LAI/FPAR product Collection 6. Part 2: Validation and intercomparison

    Get PDF
    The aim of this paper is to assess the latest version of the MODIS LAI/FPAR product (MOD15A2H), namely Collection 6 (C6). We comprehensively evaluate this product through three approaches: validation with field measurements, intercomparison with other LAI/FPAR products and comparison with climate variables. Comparisons between ground measurements and C6, as well as C5 LAI/FPAR indicate: (1) MODIS LAI is closer to true LAI than effective LAI; (2) the C6 product is considerably better than C5 with RMSE decreasing from 0.80 down to 0.66; (3) both C5 and C6 products overestimate FPAR over sparsely-vegetated areas. Intercomparisons with three existing global LAI/FPAR products (GLASS, CYCLOPES and GEOV1) are carried out at site, continental and global scales. MODIS and GLASS (CYCLOPES and GEOV1) agree better with each other. This is expected because the surface reflectances, from which these products were derived, were obtained from the same instrument. Considering all biome types, the RMSE of LAI (FPAR) derived from any two products ranges between 0.36 (0.05) and 0.56 (0.09). Temporal comparisons over seven sites for the 2001–2004 period indicate that all products properly capture the seasonality in different biomes, except evergreen broadleaf forests, where infrequent observations due to cloud contamination induce unrealistic variations. Thirteen years of C6 LAI, temperature and precipitation time series data are used to assess the degree of correspondence between their variations. The statistically-significant associations between C6 LAI and climate variables indicate that C6 LAI has the potential to provide reliable biophysical information about the land surface when diagnosing climate-driven vegetation responses.Help from MODIS and VIIRS Science team members is gratefully acknowledged. This work is supported by the MODIS program of NASA and partially funded by the National Basic Research Program of China (Grant No. 2013CB733402) and the key program of NSFC (Grant No. 41331171). Kai Yan gives thanks for the scholarship from the China Scholarship Council. (MODIS program of NASA; 2013CB733402 - National Basic Research Program of China; 41331171 - NSFC; China Scholarship Council

    Generating global products of LAI and FPAR from SNPP-VIIRS data: theoretical background and implementation

    Full text link
    Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) absorbed by vegetation have been successfully generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) data since early 2000. As the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard, the Suomi National Polar-orbiting Partnership (SNPP) has inherited the scientific role of MODIS, and the development of a continuous, consistent, and well-characterized VIIRS LAI/FPAR data set is critical to continue the MODIS time series. In this paper, we build the radiative transfer-based VIIRS-specific lookup tables by achieving minimal difference with the MODIS data set and maximal spatial coverage of retrievals from the main algorithm. The theory of spectral invariants provides the configurable physical parameters, i.e., single scattering albedos (SSAs) that are optimized for VIIRS-specific characteristics. The effort finds a set of smaller red-band SSA and larger near-infraredband SSA for VIIRS compared with the MODIS heritage. The VIIRS LAI/FPAR is evaluated through comparisons with one year of MODIS product in terms of both spatial and temporal patterns. Further validation efforts are still necessary to ensure the product quality. Current results, however, imbue confidence in the VIIRS data set and suggest that the efforts described here meet the goal of achieving the operationally consistent multisensor LAI/FPAR data sets. Moreover, the strategies of parametric adjustment and LAI/FPAR evaluation applied to SNPP-VIIRS can also be employed to the subsequent Joint Polar Satellite System VIIRS or other instruments.Accepted manuscrip

    Numerical investigation on the cavitating wake flow around a cylinder based on proper orthogonal decomposition

    Get PDF
    The non-cavitating and cavitating wake flow of a circular cylinder, which contains multiscale vortices, is numerically investigated by Large Eddy Simulation combined with the Schnerr–Sauer cavitation model in this paper. In order to investigate the spatiotemporal evolution of cavitation vortex structures, the Proper Orthogonal Decomposition (POD) method is employed to perform spatiotemporal decomposition on the cylinder wake flow field obtained by numerical simulation. The results reveal that the low-order Proper Orthogonal Decomposition modes correspond to large-scale flow structures with relatively high energy and predominantly single frequencies in both non-cavitating and cavitating conditions. The presence of cavitation bubbles in the flow field leads to a more pronounced deformation of the vortex structures in the low-order modes compared to the non-cavitating case. The dissipation of pressure energy in the cylinder non-cavitating wake occurs faster than the kinetic energy. While in the cavitating wake, the kinetic energy dissipates more rapidly than the pressure energy

    Earth reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)

    Full text link
    Poster presented at 2017 AGU Fall Meeting, New Orleans, Louisiana. POSTER ID: A33D-2387Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA’s Earth Polychromatic Imaging Camera (EPIC) onboard NOAA’s Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example

    Numerical investigation of energy loss distribution in the cavitating wake flow around a cylinder using entropy production method

    Get PDF
    The wake flow of a circular cylinder is numerically investigated by Large Eddy Simulation (LES) combined with the Schnerr–Sauer cavitation model. By comparing entropy production in the presence or absence of cavitation, the energy loss distribution in the wake flow field of a cylinder is explored, shedding light on the interactions between multiscale vortex systems and cavitation. The comparative results reveal that, under non-cavitating conditions, the energy loss region in the near-wake area is more concentrated and relatively larger. Energy dissipation in the wake flow field occurs in regions characterized by very high velocity gradients, primarily near the upper and lower surfaces of the cylinder near the leading edge. The influence of cavitation bubbles on entropy production is predominantly observed in the trailing-edge region (W1) and the near-wake region (W2). The distribution trends of wall entropy production on the cylinder’s surface are generally consistent in both conditions, with wall entropy production primarily concentrated in regions exhibiting high velocity gradients

    Implications of whole-disc DSCOVR EPIC spectral observations for estimating Earth's spectral reflectivity based on low-earth-orbiting and geostationary observations

    Get PDF
    Earth’s reflectivity is among the key parameters of climate research. National Aeronautics and Space Administration (NASA)’s Earth Polychromatic Imaging Camera (EPIC) onboard National Oceanic and Atmospheric Administration (NOAA)’s Deep Space Climate Observatory (DSCOVR) spacecraft provides spectral reflectance of the entire sunlit Earth in the near backscattering direction every 65 to 110 min. Unlike EPIC, sensors onboard the Earth Orbiting Satellites (EOS) sample reflectance over swaths at a specific local solar time (LST) or over a fixed area. Such intrinsic sampling limits result in an apparent Earth’s reflectivity. We generated spectral reflectance over sampling areas using EPIC data. The difference between the EPIC and EOS estimates is an uncertainty in Earth’s reflectivity. We developed an Earth Reflector Type Index (ERTI) to discriminate between major Earth atmosphere components: clouds, cloud-free ocean, bare and vegetated land. Temporal variations in Earth’s reflectivity are mostly determined by clouds. The sampling area of EOS sensors may not be sufficient to represent cloud variability, resulting in biased estimates. Taking EPIC reflectivity as a reference, low-earth-orbiting-measurements at the sensor-specific LST tend to overestimate EPIC values by 0.8% to 8%. Biases in geostationary orbiting approximations due to a limited sampling area are between −0.7% and 12%. Analyses of ERTI-based Earth component reflectivity indicate that the disagreement between EPIC and EOS estimates depends on the sampling area, observation time and vary between −10% and 23%.The NASA/GSFC DSCOVR project is funded by NASA Earth Science Division. W. Song, G. Yan, and X. Mu were also supported by the key program of National Natural Science Foundation of China (NSFC; Grant No. 41331171). This research was conducted and completed during a 13-month research stay of the lead author in the Department of Earth and Environment, Boston University as a joint Ph.D. student, which was supported by the Chinese Scholarship Council (201606040098). DSCOVR EPIC L1B data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. The authors would like to thank the editor who handled this paper and the two anonymous reviewers for providing helpful and constructive comments and suggestions that significantly helped us improve the quality of this paper. (NASA Earth Science Division; 41331171 - key program of National Natural Science Foundation of China (NSFC); 201606040098 - Chinese Scholarship Council)Accepted manuscrip
    • …
    corecore